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ABSTRACT
Over the last decade, there has been considerable in-
terest in designing algorithms for processing massive
graphs in the data stream model. The original moti-
vation was two-fold: a) in many applications, the dy-
namic graphs that arise are too large to be stored in the
main memory of a single machine and b) considering
graph problems yields new insights into the complexity
of stream computation. However, the techniques devel-
oped in this area are now finding applications in other
areas including data structures for dynamic graphs, ap-
proximation algorithms, and distributed and parallel com-
putation. We survey the state-of-the-art results; iden-
tify general techniques; and highlight some simple al-
gorithms that illustrate basic ideas.

1. INTRODUCTION
Massive graphs arise in any application where there

is data about both basic entities and the relationships
between these entities, e.g., web-pages and hyperlinks;
neurons and synapses; papers and citations; IP addresses
and network flows; people and their friendships. Graphs
have also become the de facto standard for representing
many types of highly-structured data. However, analyz-
ing these graphs via classical algorithms can be chal-
lenging given the sheer size of the graphs. For exam-
ple, both the web graph and models of the human brain
would use around 1010 nodes and IPv6 supports 2128

possible addresses.
One approach to handling such graphs is to process

them in the data stream model where the input is de-
fined by a stream of data. For example, the stream could
consist of the edges of the graph. Algorithms in this
model must process the input stream in the order it ar-
rives while using only a limited amount memory. These
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constraints capture various challenges that arise when
processing massive data sets, e.g., monitoring network
traffic in real time or ensuring I/O efficiency when pro-
cessing data that does not fit in main memory. Related
questions that arise include how to trade-off size and ac-
curacy when constructing data summaries and how to
quickly update these summaries. Techniques that have
been developed to the reduce the space use have also
been useful in reducing communication in distributed
systems. The model also has deep connections with a
variety of areas in theoretical computer science includ-
ing communication complexity, metric embeddings, com-
pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-
ular over the last twenty years although the focus of
much of the early work was on processing numerical
data such as estimating quantiles, heavy hitters, or the
number of distinct elements in the stream. The earli-
est work to explicitly consider graph problems was the
influential by paper by Henzinger et al. [36] which con-
sidered problems related to following paths in directed
graphs and connectivity. Most of the work on graph
streams has occurred in the last decade and focuses on
the semi-streaming model [27, 52]. In this model the
data stream algorithm is permittedO(npolylog n) space
where n is the number of nodes in the graph. This is
because most problems are provably intractable if the
available space is sub-linear in n, whereas many prob-
lems become feasible once there is memory roughly pro-
portional to the number of nodes in the graph.

In this document we will survey the results known
for processing graph streams. In doing so there are nu-
merous goals including identifying the state-of-the-art
results for a variety of popular problems and identifying
general algorithmic techniques. It will also be natural
to discuss some important summary data structures for
graphs, such as spanners and sparsifiers. Throughout,
we will present various simple algorithms that illustrate
basic ideas and would be suitable for teaching in an un-
dergraduate or graduate classroom setting.

Notation. Throughout this document we will use n and



Insert-Only Insert-Delete Sliding Window (width w)
Connectivity Deterministic [27] Randomized [5] Deterministic [22]
Bipartiteness Deterministic [27] Randomized [5] Deterministic [22]

Cut Sparsifier Deterministic [2, 8] Randomized [6, 31] Randomized [22]

Spectral Sparsifier Deterministic [8, 46]
Randomized

Õ(n5/3) space [7]
Randomized

Õ(n5/3) space [22]

(2t− 1)-Spanners O(n1+1/t) space [11, 23]
Only multiple pass
results known [6] O(

√
wn(1+1/t)) space [22]

Min. Spanning Tree Exact [27]
(1 + ε)-approx. [5]

Exact in O(log n) passes [5] (1 + ε)-approx. [22]

Unweighted Matching
2-approx. [27]

1.58 lower bound [42]
Only multiple pass
results known [3, 4] (3 + ε)-approx. [22]

Weighted Matching 4.911-approx. [25]
Only multiple pass
results known [3, 4] 9.027-approx. [22]

Table 1: Single-Pass, Semi-Streaming Results: Algorithms use O(npolylog n) space unless noted otherwise.
Results for approximating the frequency of subgraphs discussed in Section 2.3.

m to denote the number of nodes and edges in the graph
under consideration. For any natural number k, we use
[k] to denote the set {1, 2, . . . , k}. We write a = b ± c
to denote b − c ≤ a ≤ b + c. Many of the algorithms
are randomized and we refer to events occurring with
high probability if the probability of the event is at least
1−1/ poly(n). We use Õ(·) to indicate that logarithmic
factors have been omitted.

2. INSERT-ONLY STREAMS
In this section, we consider streams consisting of a

sequence of unordered pairs e = {u, v} where u, v ∈
[n]. Such a stream,

S = 〈e1, e2, . . . , em〉

naturally defines an undirected graphG = (V,E) where
V = [n] and E = {e1, . . . , em}. See Figure 1. For
simplicity, we will assume that all stream elements are
distinct and therefore the resulting graph is not a multi-
graph1. We will also consider weighted graphs where
now each element of the stream, (e, w(e)), defines both
an edge of the graph and its weight.

1

2

3 4

Figure 1: The graph on four nodes defined by the
stream S = 〈{1, 2}, {2, 3}, {1, 3}, {3, 4}〉. It will be
used to illustrate various definitions in later sections.

1Although many of the algorithms discussed immediately ex-
tend to the multigraph setting. Other problems such as esti-
mating the number of triangles or distinct paths of length two
require new ideas when edges have multiplicity [21, 38].

2.1 Connectivity, Trees, and Spanners
One of early motivations for considering the semi-

streaming model is that Θ̃(n) space is necessary and suf-
ficient to determine whether a graph is connected. The
sufficiency follows from the following simple algorithm
that constructs a spanning forest: we maintain a set of
edges H and add the next edge in the stream {u, v} to
H if there is currently no path from u to v in H .

Spanners. A simple extension of the above algorithm
also allows us to approximate the distance between any
two nodes by constructing a spanner.

DEFINITION 1 (SPANNER). Given a graph G, we
say that a subgraph H is an α-spanner for G if for all
u, v ∈ V ,

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) .

where dG(·, ·) and dH(·, ·) are lengths of the shortest
paths in G and H respectively.

While the connectivity algorithm only added an edge
if it did not complete a cycle, the algorithm for con-
structing a spanner will add an edge if it does not com-
plete a short cycle.

Algorithm 1: Spanner

1 H ← ∅;
2 for each {u, v} ∈ S do
3 If dH(u, v) > α then H ← H ∪ {{u, v}};
4 return H

The fact that the resulting graph is an α-spanner fol-
lows because for each edge (u, v) ∈ G \H , there must



have already been a path of length at mostα inH . Hence,
for any path in G of length d, including a shortest path,
there is a corresponding path of length at most αd in H .
The algorithm needs to store at most O(n1+1/t) edges
when α = 2t − 1 for integral t. This follows because
the shortest cycle in H has length 2t + 1 and any such
graph has at most O(n1+1/t) edges [15]. A naive im-
plementation of the above algorithm would be slow and
more recent work has focused on developing faster al-
gorithms [11, 23]. Other work [24] has considered con-
structing (α, β)-spanners where H is required to satisfy

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) + β .

Minimum Spanning Tree. Another generalization of
the basic connectivity algorithm is to maintain a min-
imum spanning tree (or spanning forest if the graph is
not connected).

Algorithm 2: Minimum Spanning Tree

1 H ← ∅;
2 for each {u, v} ∈ S do
3 H ← H ∪ {(u, v)};
4 If H includes a cycle, remove the largest weight

edge in the cycle from H .
5 return H

By using the appropriate data structures, the above al-
gorithm can be implemented such that each update takes
O(log n) time [60].

2.2 Graph Sparsification
We next consider constructing graph sparsifiers in the

data stream model. Rather than just determining whether
a graph is connected, these sparsifiers will allow us to
estimate a richer set of connectivity properties such as
the size of all cuts in the graph. We will be interested in
different types of sparsifier. First, Benczür and Karger [14]
introduced the notion of cut sparsification.

DEFINITION 2 (CUT SPARSIFICATION). We say that
a weighted subgraph H is a (1 + ε) cut sparsification of
a graph G if

λA(H) = (1± ε)λA(G) , ∀A ⊂ V , (1)

where λA(G) and λA(H) is the weight of the cut (A, V \
A) in G and H respectively.

Spielman and Teng [59] introduced the more general
notion of spectral sparsification based on approximating
the Laplacian of a graph.

DEFINITION 3 (LAPLACIAN). The Laplacian of an
undirected weighted graph H = (V,E,w), is a matrix

LH ∈ Rn×n where

LH(i, j) =

{∑
{i,k}∈E w(i, k) if i = j

−w(i, j) otherwise

and w(i, j) is the weight of the edge between nodes i
and j. If there is no such edge, let w(i, j) = 0.

DEFINITION 4 (SPECTRAL SPARSIFICATION). We
say that a weighted subgraph H is a (1 + ε) spectral
sparsification of a graph G if,

xTLHx = (1± ε)xTLGx , ∀x ∈ Rn , (2)

where LG and LH are the Laplacians of H and G.

Note that if we replace ∀x ∈ Rn in Equation 2 by
∀x ∈ {0, 1}n then we recover Equation 1. Hence, given
a spectral sparsification of G, we can approximate the
weight of all cuts in G. We can also approximate other
“spectral properties” ofG including the eigenvalues (via
the Courant-Fischer Theorem), the effective resistances
in the analogous electrical network, and various prop-
erties of random walks. Obviously, any graph G has a
spectral sparsifier since G is a spectral sparsifier of it-
self. What is surprising is that there exists a (1 + ε)
spectral sparsifier with at most O(ε−2n) edges [12].

A Simple “Merge and Reduce” Approach. Not only
do small spectral sparsifiers exist but they can also be
constructed in the semi-streaming model [2, 46]. In this
section, we present a simple algorithm that demonstrates
the useful “merge and reduce” framework that has been
useful for other data stream problems [8].

The following algorithm uses, as a black box, any ex-
isting algorithm that returns a (1 + γ) spectral sparsi-
fier. Let A be such an algorithm and let size(γ) be an
upper bound on the number of edges in the resulting
sparsifier. As mentioned above, we may assume that
size(γ) = O(γ−2n). We will also use the following
easily verifiable properties of a spectral sparsifier:

• Mergeable: Suppose H1 and H2 are α spectral
sparsifiers of two graphs G1 and G2 on the same
set of nodes. Then H1 ∪H2 is an α spectral spar-
sifier of G1 ∪G2.

• Composable: If H3 is an α spectral sparsifier for
H2 and H2 is a β spectral sparsifier for H1 then
H3 is an αβ spectral sparsifier for H1.

The algorithm is based on a hierarchical partitioning
of the stream. First we partition the input stream of
edges into t = m/ size(γ) segments of length size(γ).
For simplicity assume that t is a power of two. Let G0

i

be the graph corresponding to the i-th segment of edges.
For i ∈ {1, . . . , log2 t} and j ∈ {1, . . . , t/2i}, define

Gj
i = Gj−1

2i−1 ∪G
j−1
2i .



For example, if t = 4, we have:

G1
1 = G0

1 ∪G0
2 , G1

2 = G0
3 ∪G0

4 ,

G2
1 = G1

1 ∪G1
2 = G0

1 ∪G0
2 ∪G0

3 ∪G0
4 = G .

For eachGj
i , we define a weighted subgraphHj

i using
the sparsification algorithm A as follows:

H0
i = G0

i and Hj
i = A(Hj−1

2i−1 ∪H
j−1
2i ) for j > 0 .

It follows from the mergeable and composeable proper-
ties that H log2 t

1 is an (1 + γ)log2 t sparsifier of G. If we
set γ = ε/(2 log2 t) then this is a (1 + ε) sparsifier. Fur-
thermore, it is possible to compute H log2 t

1 while only
storing at most

2 size(γ) log2 t = O(ε−2n log3 n)

edges at any given time. This is because, as soon as we
have constructed Hj

i , we can forget Hj−1
2i−1 and Hj−1

2i .
Hence, at any given time we will only need to store Hj

i

for at most two values of i for each j.

2.3 Counting Subgraphs
Another problem that has received significant atten-

tion is counting the number of triangles, T3, in a graph.
This is closely related to the transitivity coefficient, the
fraction of paths of length two that form a triangle, and
the clustering coefficient, i.e.,

1

n

∑
v

T3(v)(
deg(v)

2

)
where T3(v) is the number of triangles that include the
node v. Both statistics play an important role in the
analysis of social networks. Unfortunately, it can be
shown that determining whether a graph is triangle-free
requires Ω(n2) space even with a constant number of
passes and more generally, Ω(m/T3) space is required
for any constant approximation [17]. Hence, research
has focused on designing algorithms whose space will
depend on a given lower bound t ≤ T3.

Vector-Based Approach. A number of approaches for
estimating the number of triangles have been based on
reducing the problem to a problem about vectors. Con-
sider a vector x indexed by subsets T of [n] of size three.
Each T represents a triple of nodes and the entry corre-
sponding to T is defined to be,

xT = |{e ∈ S : e ⊂ T}| .

For example, in the stream S corresponding to the
graph in Figure 1, the entries of the vector are:

x{1,2,3} = 3, x{1,2,4} = 1, x{1,3,4} = 2, x{2,3,4} = 2 .

Note that the number of triangles T3 in G equals the
number entries of x that equal 3. Bar-Yossef et al. [10]

presented an algorithm based on the following relation-
ship between T3 and the frequency moments of x, i.e.,
Fk =

∑
T xk

T .

LEMMA 2.1. T3 = F0 − 1.5F1 + 0.5F2.

Let T̃3 be the estimate of T3 that results by combin-
ing (1 + γ)-approximations of the relevant frequency
moments with the above lemma. Then,

|T̃3 − T3| < γ (F0 + 1.5F1 + 0.5F2) ≤ 8γmn

where the last inequality follows since

max(F0, F2/9) ≤ F1 = m(n− 2) .

It is possible to (1 + γ)-approximate each of these fre-
quency moments in Õ(γ−2) space and so, by setting
γ = ε/(8mn), this implies a (1 + ε)-approximation al-
gorithm using Õ(ε−2(mn/t)2) space.

A more space-efficient approach proposed by Ahn et
al. [6], is to use the `0 sampling technique [40]. An al-
gorithm for `0 sampling uses O(polylog n) space and
returns a random non-zero element from x. Let X ∈
{1, 2, 3} be determined by picking a random non-zero
element of v and returning the associated value of this
element. Let Y = 1 if X = 3 and Y = 0 otherwise.
Note that E [Y ] = T3/F0. By an application of the
Chernoff bound, the mean of Õ(ε−2(mn/t)) indepen-
dent copies of Y equals (1± ε)T3/F0 with high proba-
bility. Multiplying this by an approximation of F0 yields
a good estimate of T3. Note that an earlier algorithm
using similar space was presented by Buriol et al. [18]
but the above algorithm has the advantage that it is also
applicable in the setting (discussed in a later section)
where edges can be inserted and deleted.

Extensions and Other Approaches. Pavan et al. [54]
developed the approach of Buriol et al. such that the de-
pendence on n in the space used became a dependence
on the maximum degree in the graph, and a tighter anal-
ysis is possible. Pagh and Tsourakakis [53] presented
an algorithm based on randomly coloring the nodes and
counting the number of monochromatic triangles exactly.
Algorithms have also been developed for the multi-pass
model including a two-pass algorithm using Õ(m/t1/3)
space [17] and an O(log n)-pass semi-streaming algo-
rithm [13]. Kutzkov and Pagh [49] and Jha et al. [37]
also designed algorithms for estimating the clustering
and transitivity coefficients directly.

Extending an approach used by Jowhari and Ghodsi
[39], another line of work [39, 41, 50] makes clever use
of complex-valued hash functions for counting longer
cycles and other subgraphs. Lower bounds for find-
ing short cycles were proved by Feigenbaum et al. [28].
Other related work includes approximating the size of
cliques [35], independent sets [34], and dense compo-
nents [9].



2.4 Matchings
A matching in a graph G = (V,E) is a subset of

edges M ⊆ E such that no two edges in M share an
endpoint. Well-studied problems including computing
the matching of maximum cardinality or maximum total
weight.

Greedy Single-Pass Algorithms. A simple algorithm
that returns a 2-approximation for the unweighted prob-
lem is the following greedy algorithm.

Algorithm 3: Greedy Matching

1 M ← ∅;
2 for each e ∈ S do
3 If M ∪ {e} is a matching, M ←M ∪ {e};
4 return M

The fact that the algorithm returns a 2-approximation
follows from the fact that for every edge {u, v} in a max-
imum cardinality matching, M must include an edge
with at least one of u or v as an endpoint. At present
this is the best approximation known for the problem!
The strongest known lower bound is e/(e − 1) ≈ 1.58
which also applies when edges are grouped by endpoint
[30,42]. Konrad et al. [47] considered a relaxation of the
problem where the edges arrive in a random-order and,
in this setting, they designed an algorithm that achieved
a 1.98-approximation in expectation.

The greedy algorithm can easily be generalized to the
weighted case as follows [27, 51]. Rather than only
adding an edge if there are no “conflicting” edges, we
also add the edge if its weight is at least some factor
larger than the weight of the (at most two) conflicting
edges and then remove these conflicting edges.

Algorithm 4: Greedy Weighted Matching

1 M ← ∅;
2 for each e ∈ S do
3 Let C = {e′ ∈M : e′ ∩ e 6= ∅} ;
4 If w(e)

w(C) ≥ (1 + γ) then M ←M ∪ {e} \ C;

5 return M

It would be reasonable to ask why we shouldn’t add
e if w(e) ≥ w(C), i.e., set γ = 0. However, consider
what would happen if the stream consisted of edges

{1, 2}, {2, 3}, {3, 4}, . . . , {n− 1, n}

arriving in that order where the weight of edge {i, i +
1} is 1 + iε for some small value ε > 0. The above
algorithm would return the last edge with a total weight

of 1 + (n− 1)ε whereas the optimal solution has weight

1+(n−1)ε+1+(n−3)ε+1+(n−5)ε+. . . >
n− 1

2
,

and hence decreasing ε makes the approximation factor
arbitrarily large.

Roughly speaking, the problem with setting γ = 0 is
that the weight of the “trail” of edges that are inserted
into M but subsequently removed can be much larger
than the weight of the final edges in M . By setting γ >
0, we ensure the weights in this trail are geometrically
increasing. Specifically, let Te = C1 ∪ C2 ∪ . . . where
C1 is the set of edges removed when e was added to M
and Ci+1 is the set of edges removed when an edge in
Ci was added toM . Then, it is easy to show that for any
edge e, the total weight of edges in Te satisfies,

w(Te) ≤ w(e)/γ .

By a careful charging scheme [51], the weight of the
optimal solution can be bounded in terms of the weight
of the final edges and the trails:

w(OPT) ≤ (1 + γ)
∑
e∈M

(w(Te) + 2w(e)) .

Substituting in the bound on w(Te) and optimizing over
γ yields a 5.828-approximation. The analysis can be
extended to sub-modular maximization problems [20].

The above algorithm is optimal among determinis-
tic algorithms that only remember the edges of a valid
matching at any time [61]. However, after a sequence
of results [25, 26, 62] it is now known how to achieve a
4.91-approximation.

Multiple-Pass Algorithms. The above algorithm can
be extended to a multiple-pass algorithm that achieves
a (2 + ε)-approximation for weighted matchings. We
simply set γ = O(ε) and take O(ε−3) passes over the
data where, at the start of a pass, M is initiated to the
matching returned at the end of the previous pass.

Guruswami and Onak showed that finding the size
of the maximum cardinality matching exactly given p
passes requires n1+Ω(1/p)/pO(1) space. No exact al-
gorithm is known with these parameters but it is pos-
sible to find an arbitrarily good approximation. Ahn and
Guha [3,4] showed that a (1 + ε)-approximation is pos-
sible using O(n1+1/p) space and O(p/ε) passes. They
also show a similar result for weighted matching if the
graph is bipartite. Their results are based on adapting
linear programming techniques and a careful analysis of
the intrinsic adaptivity of primal-dual algorithms. In the
node arrival setting where edges are grouped by end-
point, Kapralov presented an algorithm that achieved a
1/(1− 1/

√
2πp+ o(1/p))-approximation ratio given p

passes. This is achieved by a fractional load balancing
approach.



2.5 Random Walks
A random walk in an unweighted graph from a node

u ∈ V is a random sequence of nodes v0, v1, v2, . . .
where v0 = u and vi is a random node from the set
Γ(vi−1), the neighbors of vi−1. For any fixed positive
integer t, we can consider the distribution of vt ∈ V .
Call this distribution µt(u).

In this section, we present a semi-streaming algorithm
by Das Sarma et al. [56] that returns a sample from
µt(u). Note that it is trivial to sample from µt(u) with
t passes; in the i-th pass we randomly select vi from the
neighbors of the node vi−1 determined in the previous
pass. Das Sarma et al. show that it is possible to reduce
the number of passes to O(

√
t). They also present al-

gorithms that use less space at the expense of increasing
the number of passes.

Algorithm. As noted above, it is trivial to perform length
t walks in t passes. The main idea of the algorithm to
build up a length t walk by “stitching” together short
walks of length

√
t. Each of these short walks can be

constructed in parallel in
√
t passes andO(n log n) space.

However, we will need to be careful to ensure that all the
steps of the final walk are independent. Specifically, the
algorithm starts as follows:

1. Let T (v) be a node sampled from µ√t(v).

2. Let v = T k(u) = T (. . . T (T (u)) . . .) where k is
maximal values such that the nodes in

U = {u, T (u), T 2(u), . . . , T k−1(u)}

are all distinct and k ≤
√
t.

The reason that we insist that the nodes in U are disjoint
is because otherwise the next steps of the random walk
will not be independent of the previous steps. So far we
have generated a sample v from µ`(u) where ` = k

√
t.

We then enter the following loop:

3. While ` ≤
√
t

(a) If v 6∈ U , let v ← T (v), ` ←
√
t + `, U ←

U ∪ {v}
(b) Otherwise, sample

√
t edges with replacement

incident on each node inU . Find the maximal
path from v such that on the i-th visit to node
x, we take the i-th edge that was sampled for
node x. The path terminates either when a
node in U is visited more than

√
t times or

we reach a node that is not in U . Reset v to
be the final node of this path and increase `
by the length of the path. If we complete the
length t random walk during this process we
may terminate at this point and return the cur-
rent node.

4. Perform the remaining O(
√
t) steps of the walk

using the trivial algorithm.

Analysis. First note that |U | is never larger than
√
t be-

cause |U | is only incremented when ` increases by at
least

√
t and we know that ` ≤ t. The total space re-

quired to store the vertices T is Õ(n). When we sam-
ple
√
t edges incident on each node in U , this requires

Õ(|U |
√
t) = Õ(t) space. Hence, the total space is

Õ(n+ t). For the number of passes, note that when we
need to take a pass to sample edges incident on U , we
make O(

√
t) hops of progress because either we reach a

node with an unused short walk or the walk uses Ω(
√
t)

samples edges. Hence, including theO(
√
t) passes used

at the start and end of the algorithm, the total number of
passes is O(

√
t).

3. GRAPH SKETCHES
In this section, we consider dynamic graph streams

where edges can be both added and removed. The input
is a sequence

S = 〈a1, a2, . . .〉 where ai = (ei,∆i)

where ei encodes an undirected edge as before and ∆i ∈
{−1, 1}. The multiplicity of an edge e is defined as fe =∑

i:ei=e ∆i. For simplicity, we restrict our attention to
the case where fe ∈ {0, 1} for all edges e.

Linear Sketches. An important type of data stream al-
gorithms are linear sketches. Such algorithms maintain
a random linear projection, or “sketch”, of the input. We
want to be able to a) infer relevant properties of the in-
put from the sketch and b) maintain the sketch in small
space. The second property follows from the linearity
of the sketch if the dimensionality of the projection is
small. Specifically, suppose

f ∈ {0, 1}(
n
2)

is the vector with entries equalling the current values of
fe and let A(f) ∈ Rd be the sketch of this vector where
we call d the dimensionality of the sketch. Then, when
(e,∆) arrives we can simple update A(f) as follows:

A(f)← A(f) + ∆ · A(ie)

where ie is the vector whose only non-zero entry is a “1”
in the position corresponding to e. Hence, it suffices to
store the current sketch and any random bits needed to
compute the projection. The main challenge is therefore
to design low dimensional sketches.

Homomorphic Sketches. Many of the graph sketches
that have been designed so far are built up from sketches
of the rows of the adjacency matrix for the graph G.
Specifically, let fv ∈ {0, 1}n−1 be the vector f restricted



to coordinates that involve node v. Then, the sketches
are formed by concatenating sketches of each fv , i.e.,

A(f) = A1(fv1) ◦ A2(fv2) ◦ . . . ◦ An(fvn) .

Note that the random projections for different Ai need
not be independent but that these sketches can still be
updated as before.

The algorithms discussed in subsequent sections all
fit the following template. First, we consider a basic al-
gorithm for the graph problem in question. Second, we
design sketches Ai such that it is possible to emulate
the basic algorithm given only the projections Ai(f

vi).
The challenge is to ensure that the sketches are homo-
morphic with respect to the operations of the basic al-
gorithm, i.e., for each operation on the original graph,
there is a corresponding operation on the sketches.

3.1 Connectivity
We start with a simple algorithm for finding a span-

ning forest of a graph and then show how to emulate this
algorithm via sketches.

Basic Non-Sketch Algorithm. The algorithm is based
on the following simple O(log n) stage process. In the
first stage, we find an arbitrary incident edge for each
node. We then collapse each of the resulting connected
components into a “supernode”. In each subsequent stage,
we find an edge from every supernode to another su-
pernode (if one exists) and collapse the connected com-
ponents into new supernodes. It is not hard to argue that
this process terminates afterO(log n) stages and that the
set of edges used to connect supernodes in the differ-
ent stages include a spanning forest of the graph. From
this we can obviously deduce whether the graph is con-
nected.

Emulation via Sketches. There are two main steps to
constructing the sketches for the connectivity algorithm:

1. An Appropriate Graph Representation. For each
node vi ∈ V , define a vector ai ∈ {−1, 0, 1}(

n
2):

ai{j,k} =


1 if i = j < k and {vj , vk} ∈ E
−1 if j < k = i and {vj , vk} ∈ E
0 otherwise

These vectors then have the useful property that
for any subset of nodes {vi}i∈S , the non-zero en-
tries of

∑
i∈S ai correspond exactly to the edges

across the cut (S, V \ S).

2. `0-Sampling via Linear Sketches: As mentioned
earlier, the goal of `0-sampling is to take a non-
zero vector x ∈ Rd and return a sample j where

Pr
r

[sample equals j] =

{
1

|F0(x)| if xj 6= 0

0 if xj = 0
.

A useful feature of existing work [40] on `0 sam-
pling is that it can be performed via linear projec-
tions, i.e., for any string r there exists Mr ∈ Rk×d

such that the sample can be reconstructed from
Mrx. For the process to be successful with con-
stant probability k = O(log2 n) suffices. Conse-
quently, given Mrx and Mry we have enough in-
formation to determine a random sample from the
set {i : xi + yi 6= 0} since

Mr(x + y) = Mrx +Mry .

For example, for the graph in Figure 1, we have

a1 = ( 1 1 0 0 0 0 )
a2 = ( −1 0 0 1 0 0 )
a3 = ( 0 −1 0 −1 0 1 )
a4 = ( 0 0 0 0 0 −1 )

where the entries correspond to the sets {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4} in that order. Note that the
non-zero entries of

a1 + a2 = ( 0 1 0 1 0 0 )

correspond to {1, 3} and {2, 3} which are exactly the
edges across the cut ({1, 2}, {3, 4}).

The resulting algorithm for connectivity is relatively
simple but makes use of linearity in an essential way:

1. In a single pass, compute the sketches: Choose
t = O(log n) random strings r1, . . . , rt and con-
struct the `0-sampling projections Mrja

i for i ∈
[n], j ∈ [t]. Then,

Ai(f
vi) =

(
Mr1a

i
)
◦
(
Mr2a

i
)
. . . ◦

(
Mrta

i
)
.

2. In post-processing, emulate the original algorithm:

(a) Let V̂ = V be the initial set of “supernodes”.

(b) For i = 1, . . . , t: for each supernode S ∈ V̂ ,
use

∑
i∈S Mrja

i = Mrj (
∑

i∈S ai) to sam-
ple an edge between S and another supern-
ode. Collapse the connected supernodes to
form a new set of supernodes.

Since each sketch Ai has dimension O(polylog n) and
there are n such sketches to be computed, the final con-
nectivity algorithm uses O(n · polylog n) space.

Extensions and Further Work. Note that the above
algorithm has O(polylog n) update time but a connec-
tivity query may take Ω(n) time. This was addressed in
subsequent work by Kapron et al. [44].

An easy corollary of the above the result is that it is
also possible to test whether a graph is bipartite. This
follows by running the connectivity algorithm on the
both G and the bipartite double cover of G. The bi-
partite double cover of a graph is formed by making two



copies u1, u2 of every node u of G and adding edges
{u1, v2}, {u2, v1} for every edge {u, v} of G. It can
be shown that G is bipartite iff the number of connected
components in the double cover is exactly twice the num-
ber of connected components in G.

3.2 k-Connectivity
We next present an extension to test k-connectivity,

i.e, determining whether every cut in the graph includes
at least k edges. This algorithm builds upon ideas in the
previous section and exploits the linearity of the sketches
to an even greater extent.

Basic Non-Sketch Algorithm. The starting point for
the algorithm is the following basic k phase algorithm:

1. For i = 1 to k: Let Fi be a spanning forest of
(V,E \

⋃i−1
j=1 Fj)

2. Then (V, F1 ∪F2 ∪ . . .∪Fk) is k-edge-connected
iff G = (V,E) is at least k-edge-connected.

The correctness is easy to show by arguing that for any
cut, every Fi contains an edge across this cut or

F1 ∪ . . . ∪ Fi−1

already contains all the edges across the cut. Hence, if
F1 ∪F2 ∪ . . .∪Fk does not contain all the edges across
the cut, it includes at least k of them. We call a set of
edges with this property a k-skeleton.

Emulation via Sketches. As with the connectivity al-
gorithm, we compute the entire set of sketches and then
emulate the algorithm on the compressed form. The im-
portant observation is that if we have computed a sketch
A(G), but subsequently need the sketch A(G − F ) for
some set of edges F we have discovered, then this can
be computed as A(G− F ) = A(G)−A(F ).

1. In a single pass, compute the sketches: LetA1(G),
A2(G), . . . ,Ak(G) be k independent sketches for
finding a spanning forest.

2. In post-processing, emulate the original algorithm:
For i ∈ [k], construct a spanning forestFi of (V,E\
F1 ∪ . . . ∪ Fi−1) using

Ai(G−F1−F2 . . .−Fi−1) = Ai(G)−
i−1∑
j=1

Ai(Fj) .

Since computing each spanning forest sketch usedO(n·
polylog n), the total space used by the algorithm for k-
connectivity is O(k · n · polylog n).

3.3 Min-Cut and Sparsification
In this section we revisit graph sparsification in the

context of dynamic graphs. To do this we will need to

discuss the offline algorithms for sparsification in more
detail.

Sparsification via Sampling. The results in this section
are based on the following generic sampling algorithm:

Algorithm 5: Generic Sparsification Algorithm

1 Sample each edge e with probability pe;
2 Weight each sampled edge e by 1/pe;

It is obvious that the size of any cut is preserved in
expectation by the above process. However, if pe is suf-
ficiently large it can be shown that a range of properties,
including the size of cuts are approximately preserved
with high probability. In particular, Karger [45] showed
that for some constant c1, if

pe ≥ q := min
{

1, c1λ
−1ε−2 log n

}
where λ is the size of the minimum cut of the graph then
the resulting graph is a cut sparsifier with high probabil-
ity. Fung et al. [29] strengthened this to show that the
sampling probability need only scale with λ−1

e where
λe is the size of the minimum cut that separates the end
points of e. Specifically, they showed that for some con-
stant c2, if

pe ≥ min
{

1, c2λ
−1
e ε−2 log2 n

}
then the resulting graph is a cut sparsifier with high prob-
ability. Spielman and Srivistava [58] showed2 that the
resulting graph is a spectral sparsifier if

pe ≥ min
{

1, c3reε
−2 log n

}
for some constant c3 where re is the effective resistance
of e. The effective resistance of an edge {u, v} is the
voltage difference that would need to be applied be-
tween u and v for 1 amp to flow between u and v in
the electrical network formed by replacing each edge by
a 1 ohm resister. The effective resistance re is a more
nuanced quantity than λe in the sense that λe only de-
pends on the number of edge-disjoint paths between the
endpoints of e whereas the lengths of these paths are
also relevant when calculating the effective resistance
re. However, the two quantities are related by the fol-
lowing inequality [7],

λ−1
e ≤ re = O(n2/3)λ−1

e . (3)

Minimum Cut. As a warm-up, we show how to esti-
mate the minimum cut λ of a dynamic graph [6]. To do
this we use the algorithm for constructing k-skeletons
described in the previous section in conjunction with
Karger’s sampling result. In addition to computing a
2Note that their result is actually proved for a slightly different
sampling with replacement procedure.



skeleton on the entire graph, we also construct skeletons
for subsampled graphs. Specifically, let Gi be the graph
formed from G by including each edge with probability
1/2i and let

Hi = skeletonk(Gi) ,

be a k-skeleton of Gi where k = 3c1ε
−2 log n. Then,

for

j = min{i : mincut(Hi) < k} ,

we claim that

2j mincut(Hj) = (1± ε)λ . (4)

For i ≤ blog2 1/qc, Karger’s result implies that all cuts
are approximately preserved and, in particular,

2i ·mincut(Hi) = (1± ε) mincut(Gi) .

However, for i = blog2 1/qc,

E [mincut(Hi)] ≤ 2−iλ ≤ 2qλ ≤ 2c1ε
−2 log n

and hence, by an application of the Chernoff bound,
we have that mincut(Hi) < k with high probability.
Hence, j ≤ blog2 1/qc with high probability and Equa-
tion 4 follows.

Sparsification. To construct a sparsifier, the basic idea
is to sample edges with probability qe = min{1, t/λe}
for some value of t. If t = Θ(ε−2 log2 n) then the
resulting graph is a combinatorial sparsifier by appeal-
ing to the aforementioned result of Fung et al. [29]. If
t = Θ(ε−2n2/3 log n) then the resulting graph can be
shown to be a spectral sparsifier by combining Equation
3 with the aforementioned sampling result of Spielman
and Srivistava [58]. In this section, we briefly outline
how to perform such sampling. We refer the reader to
Ahn et al. [6, 7] for details regarding independence is-
sues and how to reweight the edges.

The challenge is that we do not know the values of
λe ahead of time. To get around this we take a very
similar approach to that used above for estimating the
minimum cut. Specifically, let Gi be defined as above
and letHi = skeleton3t(Gi). For simplicity, we assume
λe ≥ t. We claim that

Pr [e ∈ H0 ∪H1 ∪ . . . ∪H2 log n] ≥ t/λe .

This follows because the above probability is at least
Pr [e ∈ Hj ] for j = blog λe/tc. But the expected size
of the minimum cut separating e = {u, v} in Hj is at
most 2t and appealing to the Chernoff bound, it has size
at most 3t with high probability. Hence,

Pr [e ∈ Hj ] ≈ Pr [e ∈ Gj ]

since Hj was a 3t-skeleton. The claim follows since
Pr [e ∈ Gj ] ≥ t/λe.

4. SLIDING WINDOW
In this section, we consider processing graphs in the

sliding window model. In this model we consider an
infinite stream of edges 〈e1, e2, . . .〉 but at time twe only
consider the graph whose edge set consists of the last w
edges,

W = {et−w+1, . . . , et} .

We call these the active edges and we will consider the
case where w ≥ n. The results in this section were
proved by Crouch et al. [22]. Note that some of sampling-
based algorithms for counting small subgraphs are also
applicable in this model.

4.1 Connectivity
We first consider testing whether the graph is k-edge

connected for a given k ∈ {1, 2, 3, . . .}. Note that k = 1
corresponds to testing connectivity. To do this, it is suf-
ficient to maintain a set of edges F ⊆ {e1, e2, . . . , et}
along with the time-of-arrival toa(e) for each e ∈ F
such that for any cut, F contains the most recent k edges
across the cut (or all the edges across the cut if there are
less than k of them). Then, we can easily tell whether
the graph of active edges is k-connected by checking
whether F would be k-connected once we remove all
edges e ∈ F where toa(e) ≤ t − w. This follows
because if there are k or more edges among the last w
edges across a cut, F will include the k most recent of
these edges.

The following simple algorithm maintains the set

F = F1 ∪ F2 ∪ . . . ∪ Fk

where the Fi are disjoint and each is acyclic. We add
the new edge e to F1. If it completes a cycle, we remove
the oldest edge in this cycle and add that edge to F2. If
we now have a cycle in F2, we remove the oldest edge
in this cycle and add that edge to F3. And so forth.

Therefore, it is possible to test k-connectivity in the
sliding window model using O(kn log n) space. Fur-
thermore, by reducing other problems to k-connectivity,
as discussed in the previous sections, this also implies
the existence of algorithms for testing bipartiteness and
constructing sparsifiers.

4.2 Matchings
We next consider the problem of finding large match-

ings in the sliding-window model. We will focus on the
unweighted case and describe a (3 + ε)-approximation.
It is also possible to get a 9.027-approximation for the
weighted case by combing this algorithm with a ran-
domized rounding technique by Epstein et al. [25].

Algorithm. The approach for estimating the size of the
maximum cardinality matching is based on the “smooth
histograms” technique of Braverman and Ostrovsky [16].



The algorithm maintains maximal matchings over vari-
ous “buckets”B1, . . . , Bk where each bucket comprises
of the edges in some suffix of the stream that have ar-
rived so far. The buckets will always satisfy

B1 ⊇W ) B2 ) · · · ) Bk (5)

where W is the set of active edges. Equation 5 implies
that

m(B1) ≥ m(W ) ≥ m(B2) ≥ . . . ≥ m(Bk) ,

where m(·) denotes the size of the maximum matching
on a sequence of edges.

Within each bucket B, we construct a greedy match-
ing M̂(B) whose size we denote by m̂(B). There is po-
tentially a bucket for each of the w suffixes and keeping
a matching for each suffix would use too much space.
To reduce the space usage, whenever two non-adjacent
buckets have greedy matchings whose matching size is
within a factor of 1 − β where β = ε/4, we will delete
the intermediate buckets. Specifically, when a new edge
e arrives, we update the buckets and matchings as fol-
lows:

Algorithm 6: Procedure for Updating Buckets

1 Create a new empty bucket Bk+1;
2 Add e to each M̂(Bi) if possible;
3 for i = 1, . . . , k − 2 do
4 Find the largest j > i such that

m̂(Bj) ≥ (1− β)m̂(Bi)

Discard intermediate buckets and renumber;

5 If B2 = W , discard B1. Renumber the buckets;

Analysis. We will prove the invariant that for any i < k,

m̂(Bi+1) ≥ m(Bi)/(3 + ε)

or |Bi| = |Bi+1|+ 1 or both. If |Bi| 6= |Bi+1|+ 1, then
we must have deleted some bucket B such that Bi (
B ( Bi+1. For this to have happened it must have been
the case that m̂(Bi+1) ≥ (1 − β)m̂(Bi) at the time.
The next lemma shows that the optimal matching on the
sequence of edges starting with Bi is not significantly
larger than the greedy matching we find if we start with
only start with Bi+1.

LEMMA 4.1. For any sequence of edges C,

m(BiC) ≤
(

3 +
2β

1− β

)
m̂(Bi+1C) ,

where BiC is the concatenation of Bi and C.

And hence we currently satisfy:

m(Bi) ≤
(

3 +
2β

1− β

)
m̂(Bi+1) ≤ (3 + ε)m̂(Bi+1) .

Therefore, eitherW = B1 and m̂(B1) is a 2-approximation
for m(W ), or we have

m(B1) ≥ m(W ) ≥ m(B2) ≥ m̂(B2) ≥ m(B1)

3 + ε

and thus m̂(B2) is a (3 + ε)-approximation of m(W ).
The fact that the algorithm does not use too much

space follows from the way that the algorithm deletes
buckets. Specifically, we ensure that for all i ≤ k−2 we
have m̂(Bi+2) < (1 − β)m̂(Bi). Since the maximum
matching has size at most n, this ensures that the num-
ber of buckets is O(ε−1 log n). Hence, the total num-
ber of bits used to maintain all k greedy matchings is
O(ε−1n log2 n).

5. CONCLUSIONS AND DIRECTIONS
There is now a large body of work on the design and

analysis of algorithms for processing graphs in the data
stream model. Problems that have received considerable
attention include estimating connectivity properties, ap-
proximating graph distances, finding approximate match-
ing, and counting the frequency of sub-graphs. The re-
sulting algorithms combine existing data stream tech-
niques with ideas from approximation algorithms and
graph theory. By both identifying the state-of-the-art
results and illustrating some of the techniques behind
these results, it is hoped that this survey will be useful
to both researchers that may want to use existing algo-
rithms and to those that want to develop new algorithms
for different problems.

There are numerous possible directions for future re-
search. Naturally, it would be interesting to improve
existing results. For example, does there exist a semi-
streaming algorithm for constructing a spectral sparsi-
fier when there are both edge insertions and deletions?
What is the optimal approximation ratio for estimating
the size and weight of maximum matchings? Other spe-
cific questions can be found at the wiki,

sublinear.info .

More general, open-ended research directions include:

1. Directed Graphs. Relatively little is known about
processing directed graphs and yet many natural
graphs are directed. For example, it is known that
any semi-streaming algorithm testing s-t connec-
tivity requires Ω(log n) passes [33] but is this num-
ber of passes sufficient? If we could estimate the
size of flows in directed graphs, this could lead to
better algorithms for approximating the size of bi-
partite matchings.

2. Communication Complexity. The recent results on
graph sketching imply surprisingly efficient com-
munication protocols; if the rows of an adjacency

sublinear.info


matrix are partitioned between n players, then the
connectivity properties of the graph can be inferred
from aO(polylog n) bit message from each player.
In contrast, if the partition of the entries is arbi-
trary, the players needs to send Ω̃(n) on average
[55]. What other graph problems can be solved us-
ing only short messages? What if each player also
knows the neighbors of the neighbors of a node?
From a different perspective, establishing reduc-
tions from communication complexity problems is
a popular approach for proving lower bounds in
the data stream model. But less is known about
graph stream lower bounds because it is often harder
to decompose graph problems into multiple sim-
pler “independent” problems and use existing com-
munication complexity techniques.

3. Stream Ordering. The analysis of stream algo-
rithms has traditionally been “doubly worst case”
in the sense that the contents of the stream and
the ordering of the stream are both chosen adver-
sarially. If we relax the second assumption and
assume that the stream is ordered randomly (or
that the stream is stochastically generated), can
we design algorithms that take advantage of this?
Some recent work is already considering this di-
rection [19, 43, 47]. Alternatively, it may be in-
teresting to further explore the complexity of vari-
ous graph problems under specific edge orderings,
e.g., sorted-by-weight, grouped-by-endpoint, or or-
derings tailored to the problem at hand [57].

4. More or Less Space. Research focusing on the
semi-streaming model has been very fruitful and
many interesting techniques have been developed
that have had applications beyond stream compu-
tation. However, the model itself is not suited to
process sparse graphs where m = Õ(n). While
many basic problems require Ω(n) space, this does
not preclude smaller-space algorithms if we may
make assumptions about the input or only need to
“property test” the input [32], i.e., we just need
to distinguish graphs with a given property from
graphs that are “far” from having the property. Do
such algorithms exist? Alternatively, what if we
are permitted more than Õ(n polylog n) space? Var-
ious lower bounds, such as those for approximate
unweighted matching, are very sensitive to the ex-
act amount of space available and nothing is known
if we may use O(n1.1) space for example.
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